Simulation studies of Gigabit ethernet
versus Myrinet using real application cores

Helen Chen
Sandia National Laboratories, MS 9011
P.O. Box 969, Livermore, CA 94551, USA
Phone 925 294 2991 FAX 925 294 1225

hycsw@ca.sandia.gov

Pete Wyckoff*
Sandia National Laboratories, MS 9011
P.O. Box 969, Livermore, CA 94551, USA
Phone 925 294 3503 FAX 925 294 1225

wyckoff@ca.sandia.gov

Presented at CANPC’00 workshop of High-Performance Computer Architecture, Toulouse, France, January 2000.

Keywords: simulation, gigabit ethernet, myrinet, topology.

Abstract

Parallel cluster computing projects use a large number
of commodity PCs to provide cost-effective computa-
tional power to run parallel applications. Because prop-
erly load-balanced distributed parallel applications tend
to send messages synchronously, minimizing blocking is
as crucial a requirement for the network fabric as are
those of high bandwidth and low latency. We consider
the selection of an optimal, commodity-based, intercon-
nect network technology and topology to provide high
bandwidth, low latency, and reliable delivery.

Since our network design goal is to facilitate the
performance of real applications, we evaluated the per-
formance of myrinet and gigabit ethernet technologies in
the context of working algorithms using modeling and
simulation tools developed for this work.

Our simulation results show that myrinet behaves
well in the absence of congestion. Under heavy load, its
latency suffers due to blocking in the distributed worm-
hole routing scheme.

Conventional gigabit ethernet switches can not
scale to support more than 64 gigabit ethernet ports to-
day which leads to the use of cascaded switches. Band-
width limitation in the interswitch links and extra store-
and-forward delays limit aggregate performance of this
configuration.

The Avici switch router uses six 40 Gbps inter-
nal links to connect individual switching nodes in a
wormhole-routed three-dimensional torus. Additionaly,
the fabric’s large speed-up factor and its per-connection
buffer management scheme provides for non-blocking
deliveries under heavy load.

1 Introduction

A group of enthusiasts of commodity high-performance

* Corresponding author

computing platforms has lived at the fringes of the com-
puting community for many years now, and this bunch
is seeing its numbers grow following the general demise
of the massively parallel processor (MPP) manufactur-
ers. Even the government research laboratories are join-
ing the fray. Sandia National Laboratories is a United
States Department of Energy research facility which can
no longer satisfy its thirst for FLOPS by buying mono-
lithic multi-million dollar machines, as there is not suf-
ficient market demand to keep vendors in business.

The idea of cluster computing is to aggregate ma-
chine rooms full of relatively cheap hardware, connected
with some sort of network, and apply the combined force
of the individual machines on a single calculation. Prob-
lems arise, though, in attempting to operate this set of
machines as a single unit. As it is not feasible to run
a single instance of the operating system on the entire
cluster, the alternate paradigm of message passing is
used instead. Each processor (which could also be a
small shared-memory multiprocessor) maintains a dis-
joint address space, and messages are passed between
machines as driven by the requirements of each applica-
tion.

The hardware employed in a cluster is generally the
most readily available in the volume personal computing
market, so as to leverage the cost advantages of buying
commodity hardware. The down side to this is that
some critical pieces of hardware for cluster computing
are completely irrelevant for the mass market, namely
the interconnect. The advent of shared 10 Mb/s eth-
ernet [3] was a giant step, and remains the basis of the
standard “fast” networking infrastructure, as it has been
for the last 15 years. Within the last few years, though,
the price of 100 Mb/s ethernet cards have approached
the reach of most users, and commodity gigabit network
components are on their way. High-end cluster users can
afford both gigabit ethernet and myrinet [9] as the mes-
sage passing infrastructure. More esoteric networking
components, such as HiPPi [10] and Giganet [12] are

available to those willing to incur the additional costs,
and are becoming cheaper and faster with time.

The remainder of this paper discusses the technolo-
gies we simulated, and methods we used which involve
a mix of “artificial” basic tests and simulations of core
algorithms from real parallel applications. Our results
tally the positive and negative aspects of each technol-

ogy.

2 Interconnect technologies

The following three subsections describe the network
fabrics we considered in the simulations discussed in Sec-
tion 3. In each section we calculate the current pricing
for a prototypical 256 node cluster, a size which should
be familiar to many cluster builders.

2.1 Myrinet

Myricom’s myrinet is a cost-effective, high-performance
communication and switching technology. It intercon-
nects hosts and switches using 1.28 Gb/s full-duplex
links. The myrinet PCI host adapter can be pro-
grammed to interact directly with the host processors
for low-latency communications, and with the network
to send, receive, and buffer packets.

Myricom supplies open source software that runs
on common hosts and operating systems. This software
maps the network periodically to find available paths be-
tween communicating hosts. All myrinet packets carry
a source-based routing header to provide intermediate
switches with forwarding directions. Therefore, myrinet
switches do not need to run routing algorithms or main-
tain a routing table. Because myrinet does not impose
a size limitation on its packets, it can easily encapsulate
any protocol’s packet format (e.g. TCP [8], IP, etc.),
thereby providing interoperability. While the simplicity
in the myrinet switch offers a low per-port cost, it lacks
management capability to maintain robustness in large
clusters.

The current myrinet switch is a 16-port cross-
bar, although there should soon be available a 64-port
switch. These ports can be used to interconnect ei-
ther switches or processors, thereby allowing arbitrary
network topologies. Normally, more interswitch con-
nections implies more diverse paths, which can reduce
blocking within the switching fabric. However, there will
then be fewer ports available to interconnect processing
nodes.

The severe cable length restriction is the greatest
impediment to creating complex topologies. Optical
converters are available from Myricom, at a cost of $3600

per connection, which would more than double the per-
host connection cost. On the small scale, one can eas-
ily build hypercubes and large-dimensional tori using
35 foot LAN cables. For our large scale simulations,
we chose a two dimensional torus as the best tradeoff
in terms of area and cost. It scales in two physical di-
mensions just as our hardware scales in two dimensions
on the machine-room floor. Our plans for 10000 com-
pute nodes and our budget do not permit a hypercube
topology on that scale.

Myrinet sells a network interface card for $1700,
16-port switches for $5000, and cables for $200. For the
topology described above, the total cost for 256 nodes
is 256 x $1700 + 32 x $5000 + 12 x 32 x $200 = $670k.

2.2 Gigabit ethernet

The most popular Local Area Network (LAN) technol-
ogy is ethernet. Ethernet has evolved from the 3 Mb/s
technology, invented by Bob Metcalfe in 1973, to the
10-, 100- (or fast), and 1000-Mb/s (or gigabit) ethernet
standards of today [7]. Riding on the ethernet popu-
larity current, gigabit ethernet is fast becoming a com-
modity item and therefore, we believe it can be a cost-
effective alternative to interconnect parallel computers.
Moreover, there are already discussions of 10- and even
100-gigabit per second ethernet [4], which could provide
the next generation parallel computers with a smooth
upgrade path to their communication subsystem.

Conventional routers, however, are not scalable be-
cause they use designs based on a backplane bus or cross-
bar switch. The largest non-blocking switch available
today supports only 64 nodes, and cascading is required
to build a cluster beyond that size. These routers use the
spanning tree algorithm to calculate a loop-free tree that
has only a single path for each destination, using the re-
dundant paths as hot stand-by links, precluding the use
of, say, a mesh topology. Without diverse paths, cas-
caded switches will suffer performance bottlenecks due
to output port contention.

Due to the lack of switch scalability and the neces-
sity to remain backward compatible with slower ethernet
implementations, we believe the applications of a con-
ventional gigabit ethernet switch fabric are limited to
small parallel systems. We decided to conduct a simu-
lation study of a 256-node cluster, nevertheless, in or-
der to evaluate the effects of ethernet’s packet framing,
inter-frame gap, maximum and minimum packet size,
and store-and-forward switching mechanism on the per-
formance of parallel applications.

Network cards for gigabit ethernet are around $700,
and 64-port switches can be found for $30k. Including
fiber and thinking forward to inter-switch trunking gives

a total 256-node cost of 256 x $700 4+ 5 x $30 000 + 280 x
$75 = $350k.

2.3 Avici terabit switch router

The Avici router uses two direct-connect networks [2]
as its switching fabric to achieve high performance, eco-
nomical scalability, and robustness. The dual fabric
connects switching nodes (or line cards) using twelve
20-Gbps full duplex links to form two 3-D toroidal
meshes [1]. Each set of five line cards is grouped into
a quadrant which is connected via a backplane to form
a loop in the z-dimension. The z and y dimensions are
formed by connecting neighboring quadrants along the
backplane in folded tori, which allows uniformly short
wires to be used for all connections, thereby lowering
wiring costs as well as latency variations. With this
arrangement, an Avici router can be incrementally ex-
panded to include up to 14 x 16 x 5 = 1120 line cards.
At 16 gigabit ethernet ports per line cards, this con-
figuration can interconnect a parallel system of 17920
compute processors.

Similar to myrinet, the Avici router uses wormhole
routing inside the fabric to achieve low latency. Un-
like myrinet, however, rather than buffering the entire
message inside the network, the Avici router segments
its messages into 72-byte scheduling units and exercises
credit-based flow control to prevent flit loss. Together
with its per-connection buffer management, and over-
provisioned fabric links relative to the line card I/O de-
mands, the Avici router implements an output-buffered
virtual crossbar to eliminate the blocking problem in
wormhole routing. Because of the huge speed mismatch
between gigabit ethernet and the fabric link (1:20), the
Avici router will store incoming gigabit ethernet packets
before forwarding to prevent buffer underrun within the
fabric. Unlike conventional switches, however, the num-
ber of store-and-forward operations in the Avici reaches
an upper bound of two, once at the incoming and the
other at the outgoing gigabit ethernet port. Moreover,
because the Avici router is designed for telecommuni-
cations applications, it is extremely robust and has ex-
tensive SNMP-based management capabilities, a feature
that is essential to building reliable large parallel sys-
tems.

Replacing the switches in the cost calculation for
conventional gigabit ethernet, and dropping a few un-
needed fibers gives a total 256 x $700 + $250 000 + 256 x
$75 = $450k.

3 Simulation methodologies

We adapt existing simulation packages to capture im-
portant characteristics of a technology, such as its link

level protocol and switch architecture. Because these
characteristics are unique to the technology it repre-
sents, we are not concerned with effects due to differ-
ences in implementation. Instead, we ensure the fidelity
of our simulation results by extending these packages
to use the same set of parallel algorithms to generate
traffic. We also code an identical interface layer to han-
dle details of packet transmission and reception. Since
the goal of our study is to identify potential intercon-
nect technologies, we do not consider end station over-
head. We plan to address the performance issues in-
volving the host adapter, device driver, and end-system
protocol processing in a future study.

3.1 Opnet

MIL3’s Optimized Engineering Tools [11] is a compre-
hensive engineering system capable of simulating large
communication networks with detailed protocol mod-
eling and performance analysis. Its features include
graphical specification of models, event-scheduled sim-
ulation kernel, and hierarchical object-based modeling.
We selected Opnet to simulate the conventional gigabit
ethernet switch because Opnet has an existing model
that simulates the gigabit ethernet protocol.

On the top level, we used Opnet’s network edi-
tor to compose our network using components such as
switches, nodes, and links. The network consists of
five conventional gigabit ethernet switches, 256 compute
nodes, and full-duplex links to interconnect them. We
populated four switches each with 64 end nodes, which
are in turn connected via a fifth switch. We chose a star
topology because it offers the lowest hop count between
the most distant nodes in the network.

At the next lower level, we used Opnet’s node editor
to construct our compute and switch nodes. A compute
node consists of a module to run the parallel applica-
tion models that we wrote, a gigabit ethernet protocol
entity, a transmitter, and a receiver. The process model
contains a state transition diagram which represents the
parallel code. Each of the 256 nodes in the system runs
the state machine which transitions between sending,
receiving, and computing states.

3.2 Avici simulator

Allen King and coworkers at Avici wrote a simulator [5]
to be used in planning the switch hardware they built.
We inserted hooks into the simulator by which we could
feed our own traffic patterns into the switch: send-
Packet () inserts a packet into the fabric, while re-
ceivedPacket () is called up from the fabric to notify
our modules of the receipt of a packet at a destination
line card. The function nextFlitTime() notifies our

code that the simulator has advanced in time, and we
use that notification to fire any pending events. Various
other calls are used by the fabric and the application
code modules to notify each other of initialization, com-
pletion, and to acquire or change fabric parameters. We
also added the modeling of a line card which mates 16
gigabit ethernet ports into the Avici backplane.

Our interface layer also handles the details of seg-
mentation and reassembly so that an application is in-
sulated from the transport details. This layer ensures
that no packet is dropped by keeping lists of in-flight
messages, which also aids in the generation of statistics.

3.3 Myrinet simulator

The myrinet simulator [6] was initially developed by
Chen-Chi Kuo as a graduate student in the Computer
Science Department at the University of Utah to be
used in their full system simulator. We adapted just
the myrinet part of the simulator, and added an event
handling mechanism along with the packet tracking and
upper layer frameworks written for the Avici simulator
interface.

We generated hardware parameters from Myricom’s
documentation or by performing empirical tests on our
cluster. Our connectivity topology is a two-dimensional
(wrapped) torus of switches, with eight nodes to a
switch, and was chosen for its scalability properties over
more complex topologies. The links between switches
consist of two parallel cables, giving a doubled hop-to-
hop bandwidth of 2.56 Gb/s.

The same application codes designed for use with
the Avici simulator couple directly to the interface we
wrote to communicate with Utah’s flit-level myrinet sim-
ulator, and similar parsing tools can be used to deduce
statistics from the output of simulation runs.

4 Parallel code algorithms

Accurate characterization of network performance is a
complex task. Simple numbers such as minimum latency
or maximum bandwidth are not sufficient metrics to en-
able cross-technology comparisons. We augment these
basic numbers with results from computational core al-
gorithms from real parallel codes in use at Sandia. Re-
sults from the tests are deferred until the following sec-
tion.

A code entitled token_pass is our simplest test. It
arranges the participating processors in a virtual loop
than iterates the passing of a “token” around the loop a
certain number of times. Each processor awaits a mes-
sage from its neighbor to the left, then delays a bit to
simulate processing time, then sends a message to its

neighbor on the right. By changing the size of the token
to be large, we can perform accurate bandwidth mea-
surements. By setting the payload to zero, we find the
minimum message latency. Since only two processors at
a time are ever involved in a communication, there are
no contention effects to filter out from the results.

The codes fan_in and fan_out are generated from
the same source file with different #define settings, as
they perform quite similar functions. The former sim-
ulates a global reduction whereby each processor sends
a message to the “host” processor. The sends are stag-
gered slightly to avoid odd synchronization effects in
the switches, and to simulate real life in which it is im-
possible to do clock-synchronized sends on a distributed
machine. This test is good for measuring performance
degradation due to internal fabric blocking. In the re-
verse mode, fan_out has the host processor sending
staggered messages to all the other processors. This
tests the blocking effects in the other direction. Per-
formance numbers from fan_in and fan_out model
the startup and shutdown events of parallel applica-
tions, which often include global broadcast and reduc-
tion phase.

The code mesh simulates a computational kernel
from a two-dimensional finite element calculation. This
class of structured grid codes is very common among
the large scale calculations being performed today at
the laboratories. The processors are laid out in a virtual
two-dimensional mesh, and each processor will commu-
nicate with its immediate neighbors in both the z and
y directions. The code performs a number of iterations
of computation and communication cycles, which repre-
sents the real code’s explicit time stepping algorithm as
it solves a generalized partial differential equation.

We have made some modifications to the mesh code
to model a torus topology, which is necessary for a code
simulating periodic boundary conditions and arises in
calculations on a spherical domain or in free space, for
instance. In the toroidal topology, each processor always
has four neighbors, unlike in the mesh where edge and
corner processors have fewer neighbors.

5 Results

Our results are presented in order of the algorithms we
used to test the networks, followed by a summary of all
the tests.

5.1 Technology characterization

We ran the token_pass code with a one-byte payload to
determine the minimum message latency between neigh-
boring nodes in a 256-member virtual ring for all three

fan_in fan_out
Min Avg Max o? Min Avg Max o?
Myrinet 13.19 | 1663.51 | 3313.83 | 956.55 | 13.43 | 1666.60 | 3319.09 | 957.94
Avici GigE | 538.26 | 2941.32 | 4349.76 | 1055.05 | 63.24 | 159.54 | 258.60 | 45.13
Conventional Gigk 24.83 | 2488.14 | 4345.48 | 1343.83 | 24.83 46.17 54.76 | 11.13
Avici fabric 468 | 129.72 | 233.49 66.55 | 21.18 | 141.44 | 233.43 | 61.62

Figure 2. Latency statistics for fan_in and fan_out codes. Units are in us.

technologies. As mentioned earlier, since only two pro-
cessors at a time are involved in communication, there
are no contention effects. We compiled our results and
listed the minimum, maximum, average, and standard
deviation values for each study in Figure 1. As shown,
the myrinet technology delivered very good latency and
jitter (latency variation). Jitter in the absence of con-
gestion is a function of network topology; it reflects the
difference in distance between token_pass neighbors in
the network. The raw fabric speed for the Avici switch
is shown as the last line in Figure 1.

Min | Avg | Max | o?
Myrinet | 0.388 | 0.427 | 0.869 | 0.093
Avici GigE | 1.380 | 1.386 | 1.530 | 0.024
Conventional GigE | 1.564 | 1.595 | 3.532 | 0.244
Avici fabric | 0.180 | 0.186 | 0.330 | 0.024

Figure 1. Minimum message latency results, in us.

As a result of the Avici’s higher fabric speed and
path diversity in the 3D-torus topology, myrinet’s per-
formance is inferior to that of the Avici, as we configured
a 2D torus for myrinet due to its physical constraints.
As expected, since the Avici gigabit ethernet routes its
packet through the Avici fabric, it had inherited the fab-
ric’s low jitter. The increases in its latency amounts to
the sum of two transmission delays, when the packet
arrives at the input and when it reaches the output of
the Avici gigabit ethernet line cards. Store-and-forward
switching is necessary here in order to prevent buffer un-
derrun at the outgoing line card switch due to the large
speed mismatch; a fabric link is 20 times that of the
gigabit ethernet speed. Furthermore, because the ether-
net standard imposes a minimum packet size of 64-byte,
the original one-byte message was padded before trans-
mission. Therefore, each of the transmission delays is
actually 64 % 8/1000 = 0.512 us. Two times this value
is roughly the increase seen in comparing to the fabric’s
latency.

The existing Opnet switch model does not emu-
late processing delay; consequently, the latency values
that we obtained through simulation (Figure 1 row 3)
are better than measured statistics. In our star topol-
ogy, a packet will traverse either one or three hops de-

pending on whether the immediate neighbor is on the
same switch or not. Since switches today typically in-
cur about 10 ps of processing delay, the values listed in
Figure 1 would have an additional latency of 10 us at
the lower bound, and 30 us at the upper bound, mak-
ing the performance of a conventional switch the least
favorable of the three.

Using token_pass and a 15 MB message, we mea-
sured throughput for each technology to verify the cor-
rectness of our simulation code. We chose that message
size because it is large enough to fill the end-to-end com-
munication pipe, a criterion necessary for throughput
measurements. The end-to-end communication pipe is
the product of the theoretical bandwidth and the round-
trip time. The simulation throughput values are differ-
ent from the corresponding theoretical bandwidth by
less than half a percent.

5.2 Fan-in and Fan-out

Figure 2 lists the maximum, minimum, average, and
standard deviation latency results for a 2 kB message
from our fan_in study. The results for smaller messages
go linearly to zero, and are not shown. The simulations
had 255 sources each sending one messages to a sin-
gle destination, thereby causing contention at the des-
tination host machine. Myrinet performance is roughly
20% better than both the conventional and the Avici
gigabit ethernet, because it has an effective bandwidth
of 1.28 Gb/s to the destination host as opposed to the
0.98 Gb/s of gigabit ethernet.

Figure 2 also lists the latency results for a 2 kB
message in the fan_out studies. A message was broad-
cast from the source to all destinations. As shown in
the table, the conventional gigabit ethernet switches of-
fer the best end-to-end latency by far, because these
switches implement multicast in hardware, where a mul-
ticast packet is referenced and sent simultaneously to
all multicast members. On the other hand, wormhole
routing emulates multicast in software; this mechanism
requires a source host to send a multicast packet multi-
ple times, one for each multicast destination. Therefore,
myrinet exhibited the worst latency performance. The
Avici fabric fared better because of its higher aggregate
bandwidth and diverse paths.

Avici Myrinet Ethernet

Size | Min | Avg | Max o? Min | Avg | Max o? Min | Avg Max o?
32 1.38 | 2.57 528 | 0.87| 0.58 | 1.57 5.74 | 0.90 1.56 | 49.55 | 174.77 | 19.82
64 1.65 3.27 7.11 1.10 0.78 2.23 9.85 1.44 1.85 49.35 175.06 19.90
128 2.76 5.34 9.72 1.75 1.18 3.74 17.58 2.54 2.88 49.30 190.47 | 20.65
256 486 | 9.18 | 17.37| 3.02 1.98 | 785 | 55.75| 7.07 | 4.92| 48.18 | 214.20 | 26.61
512 9.09 | 16.97 | 30.93 | 5.44 3.58 | 16.73 | 226.71 | 18.83 9.02 | 48.32 | 333.28 | 52.31
1024 | 17.49 | 32.56 55.95 | 10.25 6.78 | 36.54 | 441.90 | 43.75 | 17.21 84.04 | 586.44 | 98.29
2048 | 22.20 | 59.20 | 112.59 | 20.21 | 13.18 | 75.89 | 906.86 | 93.33 | 29.52 | 151.36 | 1088.28 | 188.40

Figure 3. Latency simulation results from mesh algorithm. Size is in bytes, all other fields are in us.

5.3 Mesh and torus

The results for both the mesh and torus algorithms are
included in this section as the codes are identical save
for the extra edge connections in torus. Similar results
will also be seen in both.

Message latency

The first data we present is a message latency. All mes-
sages sent (and received) are recorded with timestamps
across all the iterations of the algorithm. The data
in Figure 3 list the average time for a message to pass
through the respective network, along with the standard
deviation of the measurements and the maximum and
minimum times. It is seen by comparing the average
and maximum values for each technology that the max-
imum message transfer time can be up to an order of
magnitude more than the average in the case of myrinet
and conventional gigabit ethernet due to the presence
of link contention. Only with the Avici switch are the
numbers more comparable. These maximum numbers
tend to pull up the averages.

The average transfer times for both the Avici and
for myrinet are seen to be similar, while the conven-
tional ethernet is larger due to the bottleneck at the
second-stage switch in the center of the topology. It
would be reasonable to use trunked links from the first-
stage switches to the central switch to provide improved
bandwidth and alleviate the bottleneck, but this type
of scalability will not go too far as commodity switch
vendors only provide small numbers of ports per switch.
A fat tree using multiple switches is a possible solution,
but expensive, and may also not reach high node counts
as the switches directly connected to hosts will run out
of ports in that case.

Up to a message size of 256 bytes, the myrinet net-
work delivers average latencies about 1 ps lower than
does the Avici ethernet. The y-axis intercept of the
myrinet average line is about 1 ps while that for the
Avici is 2 ps. This is due to the latency induced in
the Avici switch core itself, which we measure to be the
same amount. Myrinet switches add about 300 ns per

hop, with an average of 3 hops per route in a 8 x 4 two-
dimensional torus, to give the y-intercept seen there.

In the large message extreme, a 2 kB packet takes
on average 59 us to transfer through the Avici ethernet
network, or 76 us to transfer through the myrinet net-
work; however, the worse case transfer time is a factor
of eight greater for the myrinet, almost as bad as in the
conventional gigabit ethernet network. Note that these
are not raw transfer times, but the result of the inter-
actions with transfers between other pairs of nodes on
the network. This leads us to conclude that the effect
is from the blocking induced by obstructing messages
in the network traffic. The Avici switch is configured
to be non-blocking by its extreme path redundancy and
the fact that we do not overload the ports on each line
card, so any difference between the maximum message
transfer time and the average is due to output port con-
tention, i.e., when multiple messages are waiting to en-
ter a single destination host. In the case of the conven-
tional gigabit ethernet, messages may be blocked at the
output ports of each of the up to three switches in the
path from the source to the destination. The case for
Myrinet involves up to six switches, but the bottleneck
is not as great as in ethernet due to the multiple routes
of the switches.

The message latency values for the related algo-
rithm, torus, are well inside of one standard deviation
away from those presented for mesh, and offer no solid
conclusions. The algorithmic difference is that slightly
more communication is occurring, and it is becoming
more regular in that each processor talks to exactly four
neighbors in torus. The underlying network is identi-
cal in both algorithms. This regularity seemed to help
myrinet to provide fairer bandwidth sharing during con-
tention, where results show a decrease in average and
maximum latencies and standard deviations for all mes-
sage sizes. This phenomenon is absent in the Avici case
because of its much higher internal fabric speed. Con-
ventional gigabit ethernet switches lack path diversity,
and thus the increased offered load presented by the
torus algorithm increased the queue depths at the out-

10

10

10

Avici .
mesh b

Avici
torus

s

Ee

S

50 100 150 200
time (us)

250 O

50 100 150 200
time (us)

250

Myrinet
mesh

Myrinet
torus

1 1 1
50 100 150 200 250 300
time (us)

1 1
50 100 150 200 250
time (us)

300

350

Gigabit ethernet
mesh

1 1 1 1 1 1 1 1

===

4 1

Gigabit ethernet
torus

1 1 1 1 1 1 1 1

1

100 200 300 400 500 600 700 800
time (us)

900 100

200 300 400 500 600 700 800 900
time (us)

Figure 4. Completion times, 256 byte messages, for the three technologies and the two algorithms.

1000

1100

3500 5

T

avici o— q
myrinet —+--
eth):emet 8- 1 77

3000

T
!

2500

2000

T
—
.

1500

T
!

time to completion (us)

0 L L L L

0 500 1000 1500 2000
message size (bytes)

6000
pal
5000 - avici —o— q
myrinet -+~ i
ethernet -&--
252
4000]
H
8
£ 3000 [- R
8
° =g
E B o+
E ol 118 -]
. - T
e A
1000 (EE-& -8 0.34 g
0 = L L L

I
0 500 1000 1500 2000
message size (bytes)

Figure 5. Total time for completion, mesh and torus topologies, with slope of linear fit.

put ports of the switches.

Completion times

The second data analysis we perform takes into account
more of the details of the algorithm. Figure 4 shows
plots of the results at a 256 byte message size, for each
of the three technologies, and for both of the algorithms.

Each plot shows, for each iteration, and for each
processor, the time when that processor completed that
iteration. The unlabeled vertical axis is the iteration
number of the algorithm, from 1 to 10. The horizon-
tal axis is the global time, in microseconds, and varies
from plot to plot as the completion times are quite dif-
ferent with respect to both message size and to network
technology.

Each integral band of y-axis is broken up into 256
points, one for each processor, and a dot is placed in a
processor’s strip in a given iteration number at the time
that processor has sent and received all messages neces-
sary to proceed with the calculation of that timestep, or
equivalently, when the processor has received the results
of the previous iteration from all its neighbors.

One thing to notice in the plots is that some pro-
cessors always complete much earlier than the others.
For the mesh case, these are usually the ones on the cor-
ner which have fewer messages to exchange with their
neighbors, as there are fewer neighbors. In the torus
case, this is not true, and the individual bunches of dots
tend to be more even, as the corner and edge processors
can not advance too far ahead of the rest of the fray in
the middle.

At the relatively small 256 byte message size shown
in the figure, the iteration bunches are well separated
from each other as most of the time to completion of
each iteration is taken up by computation time, repre-
sented in our simulation by a sleep of 10 us. An ideal

network which used no time to transfer messages would
show perfectly vertical lines at each iteration, with the
last line (between 9 and 10) at 90 us. Anything more
than this is the effect of waiting for communications.

Unshown are the plots for the rest of the studied
range of message sizes, where looking at just the Avici
results, we observe that the total time to completion is
gradually increasing, from 140 us for 32 byte messages,
to 900 us at 2 kilobyte messages, and that each itera-
tion bunch is becoming separated into individual stripes,
with the edge processors finishing earlier than the bulk
in the center. For the torus case there is no obvious
striping.

In the myrinet network case, where the groups are
fuzzier as the effect of the larger maximum communi-
cation times listed in Figure 3. The apparent patterns
in the large message size plots show the discrepancy in
transfer time between nearby nodes and distant nodes in
the mesh (or torus) as messages sent farther through the
network are subject to more potential points of block-
ing. Total time to completion for these simulations are
the same as for Avici at small message sizes, to about
three times longer in the large message case.

The results for the conventional gigabit ethernet
cascade of switches feature z-axis ranges consistently
three to six times larger than those for the Avici plots.
Great multi-millisecond stripes can be seen in the large
message size plots for the ethernet where whole regions
of the two dimensional mesh proceed into later iterations
while other regions are still working on the communica-
tions associated with earlier iterations. In the torus
case this horizontal striping is more pronounced but the
iterations are forced to be more temporally bunched as
the added toroidal communication patterns introduce
more dependencies between processors.

This spread in iteration number is able to occur

since there is no global synchronization step between
iterations—each processor is permitted to proceed to the
next iteration as long as it has received results from the
previous iteration from all its neighbors. Following this
thought, it can be seen that a certain processor can get
up to two iterations in time away from those processors
which are neighbors of its immediate neighbors. This
continues up to the boundaries of the mesh, which for
our 16 x 16 case means that the spread can proceed up
to eight iterations apart.

It is interesting to notice the rate of degradation of
network performance with increasing message size. This
is shown in Figure 5 for the two algorithms. A linear fit
of the largest two points for each technology and each
algorithm is overlaid on the plot near the corresponding
curve. This slope represents the scalability of the given
network technology to the two algorithms under increas-
ing message size. Both codes give the same scalability
performance on the first two networks, but for conven-
tional gigabit ethernet, the increased offered load seen
in the torus algorithm renders the network less scalable
as message sizes grow.

Summary

The average message latency delivered by the three net-
work technologies is affected both by available band-
width and the presence of bottlenecks. The conventional
cascaded gigabit ethernet without trunking is hampered
severely by both these factors. Fabric blocking is seen
to be bad for parallel algorithms in that it increases
the maximum latency seen by any particular message,
and since all messages must eventually reach their des-
tination before the code can complete, that maximum
latency value is crucial to the wall-clock performance of
a code. The Avici switch is seen to have the smallest
amount of fabric blocking, while the myrinet fabric of-
fers potential blocking points at every switch along the
path of a message.

The algorithm we tested was chosen due to its ubig-
uity in parallel scientific computing. It emphasizes the
nature of locality in many algorithms in production use
today, but points out in the results above that not all
communications will physically be local even though
in the virtual topology they may appear to be near-
est neighbor. This mapping of algorithmic topology to
physical topology is crucial for application performance.
We did not model an algorithm which involved a global
synchronization, which are also common especially for
those that do disk input and output. The effects of this
communication pattern can be discerned by looking at
the fan_in and fan_out results of Section 5.2.

6 Conclusions

We have presented the results of analysis of three differ-
ent major network architectures for parallel commod-
ity computing. It is important to choose the network
correctly as it can have a large impact on all but the
most embarrassingly parallel applications, and may be
the source of up to half of the cost of the entire machine.
Important factors to consider are raw performance fig-
ures such as bandwidth and latency, as well as more
complex parameters such as jitter, routing, multicast
support, and distribution of blocking in the fabric.

Since our network design goal is to facilitate the
performance of real applications, we evaluated the per-
formance of the three network technologies when applied
to specific application cores important to our users. In
this context we analyzed timing results gathered from
the networks and drew conclusions from our knowledge
of the network about its effect on performance of the
application.

Our simulation results show that myrinet behaves
well in the absence of congestion. Under heavy load,
its latency suffers due to blocking in wormhole rout-
ing. Also myrinet is limited from scaling too far due
to the short cable length problem. Future development
by Myricom may alleviate that constraint, although the
cost to latency or budgets is unknown. The simplicity
in the myrinet switch results in low per-connection cost;
however, the non-commodity nature of the host network
interface cards keep that side of the connection expen-
sive.

Conventional gigabit ethernet switches can not
scale to support more than 64 gigabit ethernet ports,
which lead to the introduction of a topology which in-
volves cascading multiple stages of small switches. The
presence of multiple hops in a path between hosts, and
the store-and-forward nature of legacy ethernet leads to
unacceptable message delays. Bandwidth bottlenecks at
the topmost switch in the cascade are also a problem.

The Avici terabit switch router has an internal
fabric which is quite similar to myrinet, in that it is
a very high-bandwidth three-dimensional torus using
source routing and simple non-buffering switches. The
line cards present standard gigabit ethernet connections
to hosts, though, in keeping with the current com-
modity favorite. Our simulations show that the Avici
switch outperformed myrinet on large messages (above
512 bytes), and was comparable in the small-message
regime. From a cost standpoint, Avici is only slightly
cheaper than myrinet for a comparable topology, and is
expected to reduce in cost with further penetration of
gigabit ethernet into the market.

References

[1]

2]

[9]
[10]
[11]

[12]

Dally, W. “Scalable Switching Fabrics for Internet
Routers.” Computer Systems Laboratory,
Stanford University and Avici Systems. July 1999.

Duato, J., Yalmanchili, S., and Ni, L.
“Interconnection Networks: an Engineering
Approach.” IEEE Computer Society Press. 1997.
pp. 11-16.

Held, G. Ethernet networks: design,
implementation, operation, management. John
Wiley & Sons, Inc. 1998, pp. 78-95.

Jacobsen, O. J., ed. “From the editor.” The
Internet Protocol Journal. 2, n. 3, pp. 1ff, 1999.
King, A. “Terasim: the Simulator for Avici TSR.”
Avici Systems, Inc., 1997.

Kuo, C. C. “The Avalanche Myrinet Simulation
Package.” Department of Computer Science.
University of Utah. 1997.

Seifert, R. Gigabit Ethernet: technology and
applications for high speed LANs, Addison-Wesley,
1998, pp. 141-280.

Stevens, W. TCP/IP Illustrated. Addison-Wesley,
1994-1996.

Myricom. http://www.myri.com/myrinet/
overview/index.html. 1999.

High performance networking forum.
http://www.hnf.org. 1998.

MIL3. http://www.mil3.com/products/
modeler/home.html. 1999.

Giganet. http://wuw.giganet.com. 1999.

